Difference between revisions of "Help:Math"

From SolarSailWiki
Share/Save/Bookmark
Jump to: navigation, search
m
m
 
(5 intermediate revisions by one user not shown)
Line 1: Line 1:
 +
==LaTeX==
 +
 +
You can enter LaTeX equations by enclosing them in <nowiki><math>...</math></nowiki> tags. This uses the [http://www.mediawiki.org/wiki/Extension:Math Math extension]. For LaTeX math help, see:
 +
* [http://www.latex-project.org/guides/ LaTeX documentation]
 +
** [http://ctan.tug.org/tex-archive/info/lshort/english/lshort.pdf The Not so Short Introduction to LaTex] - with a very complete chapter on typesetting mathematical formulas
 +
 +
===Examples===
 +
 +
<nowiki><math>\sqrt[3]{a x + x^2}</math></nowiki> produces <math>\sqrt[3]{a x + x^2}</math>
 +
 +
The acceleration of a solar sail due to solar pressure <math>\vec a_s</math> given the position vector from the sun to the sail <math>\vec r_s</math> is:
 +
 +
<math>\vec a_s = a_c {AU^2 \over r_s^2} \left(\vec r_s \cdot \vec n\right)^2 \vec n</math>
 +
 +
where <math>a_c</math> is max sail acceleration at Earth's distance from the sun (1 AU), <math>AU</math> is the length of an astronomical unit, <math>r_s</math> is the magnitude of <math>\vec r_s</math>, and <math>\vec n</math> is the unit vector normal to the sail surface.
 +
 
==Mimetex==
 
==Mimetex==
 +
 +
''Deprecated. Please follow LaTeX instructions from now on.''
  
 
Mathematics can be displayed on SolarSailWiki using the [http://www.forkosh.com/mimetex.html Mimetex] program, which uses a subset of the [http://www.latex-project.org/ LaTeX] math formulas.
 
Mathematics can be displayed on SolarSailWiki using the [http://www.forkosh.com/mimetex.html Mimetex] program, which uses a subset of the [http://www.latex-project.org/ LaTeX] math formulas.
Line 10: Line 28:
 
Some examples:
 
Some examples:
  
<nowiki><tex>\sqrt[3]{a x + x^2)</tex></nowiki> produces <tex>\sqrt[3]{a x + x^2)</tex>
+
<nowiki><tex>\sqrt[3]{a x + x^2}</tex></nowiki> produces <tex>\sqrt[3]{a x + x^2}</tex>
  
 
The acceleration of a solar sail due to solar pressure <tex>\vec a_s</tex> given the position vector from the sun to the sail <tex>\vec r_s</tex> is:
 
The acceleration of a solar sail due to solar pressure <tex>\vec a_s</tex> given the position vector from the sun to the sail <tex>\vec r_s</tex> is:
Line 18: Line 36:
 
where <tex>a_c</tex> is max sail acceleration at Earth's distance from the sun (1 AU), <tex>AU</tex> is the length of an astronomical unit, <tex>r_s</tex> is the magnitude of <tex>\vec r_s</tex>, and <tex>\vec n</tex> is the unit vector normal to the sail surface.
 
where <tex>a_c</tex> is max sail acceleration at Earth's distance from the sun (1 AU), <tex>AU</tex> is the length of an astronomical unit, <tex>r_s</tex> is the magnitude of <tex>\vec r_s</tex>, and <tex>\vec n</tex> is the unit vector normal to the sail surface.
  
 
+
<!--
 
==ASCIIMath Not Currently in Use==
 
==ASCIIMath Not Currently in Use==
  
Line 63: Line 81:
  
 
where <am>a_c</am> is max sail acceleration at Earth's distance from the sun (1 AU), <am>AU</am> is the length of an astronomical unit, <am>r_s</am> is the magnitude of <am>vec r_s</am>, and <am>vec n</am> is the unit vector normal to the sail surface.
 
where <am>a_c</am> is max sail acceleration at Earth's distance from the sun (1 AU), <am>AU</am> is the length of an astronomical unit, <am>r_s</am> is the magnitude of <am>vec r_s</am>, and <am>vec n</am> is the unit vector normal to the sail surface.
 +
-->

Latest revision as of 10:32, 11 June 2012

LaTeX

You can enter LaTeX equations by enclosing them in <math>...</math> tags. This uses the Math extension. For LaTeX math help, see:

Examples

<math>\sqrt[3]{a x + x^2}</math> produces \sqrt[3]{a x + x^2}

The acceleration of a solar sail due to solar pressure \vec a_s given the position vector from the sun to the sail \vec r_s is:

\vec a_s = a_c {AU^2 \over r_s^2} \left(\vec r_s \cdot \vec n\right)^2 \vec n

where a_c is max sail acceleration at Earth's distance from the sun (1 AU), AU is the length of an astronomical unit, r_s is the magnitude of \vec r_s, and \vec n is the unit vector normal to the sail surface.

Mimetex

Deprecated. Please follow LaTeX instructions from now on.

Mathematics can be displayed on SolarSailWiki using the Mimetex program, which uses a subset of the LaTeX math formulas. All you need to do is enclose a valid TeX/LaTeX formula inside <tex>...</tex> tags. Formulas will be rendered as GIF images.

Some examples:

<tex>\sqrt[3]{a x + x^2}</tex> produces \sqrt[3]{a x + x^2}

The acceleration of a solar sail due to solar pressure \vec a_s given the position vector from the sun to the sail \vec r_s is:

\vec a_s = a_c {AU^2 \over r_s^2} \(\vec r_s \cdot \vec n\)^2 \vec n

where a_c is max sail acceleration at Earth's distance from the sun (1 AU), AU is the length of an astronomical unit, r_s is the magnitude of \vec r_s, and \vec n is the unit vector normal to the sail surface.