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Abstract

Attitude Control and Dynamics of Solar Sails

by Benjamin L. Diedrich

Chair of Supervisory Committee:

Professor Uy-Loi Ly
Aeronautics & Astronautics

Solar sailing is a method of space propulsion whereby radiation pressure from sunlight

or artificial sources is used to propel a spacecraft which reflects that radiation. This

thesis examines attitude control by means of displacing the center of mass of a solar

sail spacecraft with respect to the center of pressure of the sail. The rotational

dynamics of this type of solar sail are developed. A simple LQR controller is found

by linearizing the sail about an equilibrium point. LQR control is able to provide

effective control for the sail even when it is commanded to rotate to an angular

position far from the equilibrium point about which the LQR controller was found.
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NOMENCLATURE

(e1, e2, e3) Inertial frame for sail attitude dynamics

(s1, s2, s3) Sail body frame

(c1, c2, c3) Control boom body frame

φ Euler angles between inertial and body frames

φs 2D Euler angle of sail

φc 2D Euler angle of control boom
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(φc,1, φc,2) 3D Euler angles of control boom
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′

3) Intermediate sail body frame after 1st Euler rotation

(s′′1, s
′′

2, s
′′

3) Intermediate sail body frame after 2nd Euler rotation

(c′1, c
′

2, c
′

3) Intermediate control boom body frame after 1st Euler rotation

Is 3D sail inertia tensor

Ic 3D control boom inertia tensor

w Structural boom length

x



σs Sail areal density

σb Structural boom linear density

lc Control boom length

σc Control boom linear density

mp Payload mass

~rs Sail position vector

~qs Sail generalized coordinate vector

~rc Control boom position vector

~qc Control boom generalized coordinate vector

~q System generalized coordinate vector

lb Distance of control boom center-of-mass from sail center-of-mass

xi
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Chapter 1

INTRODUCTION

Sailing in the most general sense is the technique of diverting a small portion of

a momentum flux for the purpose of propelling a vehicle. Sailing vessels on Earth

achieve this with wind sails, which divert a small portion of the massive momentum

flux present in moving bodies of air. In space, a vehicle called a solar sail or light

sail can achieve the same effect by diverting a small portion of the massive flux

of electromagnetic energy put out by the sun as light using large and lightweight

mirrored sails. Sunlight has long been known to carry momentum. For almost as

long, people such as the Russian space visionary Fridrikh Tsander have envisioned

the use of sails for use in space propulsion. Since the 1950s, there has been a wealth

of research and papers written on solar sailing. To a large extent, these papers have

discussed the orbital dynamics of solar sails and the trajectories they could follow

around the sun, planets, and even into interplanetary space. However, very little work

has been published on solar sail attitude dynamics. This paper presents an approach

for analyzing the attitude dynamics and control of solar sails within the context of a

specific, simplified, solar sail design. This is an important field of research because of

the dependence of a solar sail trajectory on the attitude of the sail over time. No solar

sail has been launched yet, but serious work is progressing in bot the civil and private

sectors to launch a solar sail mission. An understanding of the attitude dynamics is

essential to making such a mission successful.

Solar sails reflect the incident light falling on them, so that the net force acting on
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a sail is the vector sum of the forces from the light striking the sail, and the reaction

force from the light reflected by the sail. Sails can be made highly reflective ( 85-90%),

so that the net force vector has a direction that is close to the vector normal to the

sail surface. Therefore, the force acting on the sail is a function of the orientation of

the sail normal vector with respect to the incident sunlight. Solar sail trajectories are

then determined by the time history of the sail normal vector.

Chapter 2 develops the rotational dynamics of a solar sail spacecraft with a specific

attitude control system. The two-dimensional dynamics are developed in full, while

the three-dimensional dynamics are developed far enough to illustrate the method.

Chapter 3 develops non-linear and linear state models of the solar sail attitude dynam-

ics, and uses the linear model to develop an LQR attitude controller for the angular

position of the sail with respect to the incident sunlight. An LQR cost function is

developed that will work with a variety of specific sail models. Chapter 4 gives three

specific numerical solar sail models of the type specified in chapter 2 and runs them

through a series of tests to verify the ability of the attitude controller to respond to

reference sail angular position commands and initial conditions. Chapter 5 presents

a set of example solar sail trajectories. These trajectories each have a time history of

the sail angle required to provide the trajectory. This information and some selected

simulations are used to evaluate the ability of the attitude controller to carry out each

mission. Finally, chapter 6 summarizes the conclusions regarding the research and

offers suggestions for further research.

Appendix A gives a derivation of the inertia tensors used in the example solar sail

models. Appendix B gives a full derivation of the two-dimensional orbital dynamics

of a solar sail in orbit around the sun. Appendix C briefly describes the optimization

method, in particular the cost function, used to calculate the trajectories shown in

chapter 5.
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Chapter 2

ROTATIONAL DYNAMICS

2.1 Introduction

The rotational dynamics of a solar sail are developed using Lagrangian dynamics. The

procedure involves defining three reference frames - inertial, sail, and control boom,

deriving the three-dimensional inertia tensor, then finding the rotational equations

of motion. Both the two- and three-dimensional equations of motion are found, but

only the two-dimensional case is used for detailed analysis in following chapters. This

procedure follows the techniques described in [Ly99b].

The specific solar sail spacecraft modeled consists of a square film of sail mate-

rial supported by four structural booms radiating from the center. The concept for

this spacecraft was detailed by the German aerospace agency, DLR, under the name

ODISSEE and is described in [McI99]. Attitude control is provided by a boom with

a payload mass on the end extending from the center of the sail. This geometry may

be varied, which will change the inertia tensors and acceleration from sunlight. This

spacecraft is shown in figure 2.1.

The rotational dynamics of the sail in orbit around the sun are developed using

Lagrangian dynamics. They are developed within the reference frames described in

section 2.2. One important assumption regarding the reference frames is to assume

that the frame e is inertial. This is not actually the case, as the e frame corresponds to

the rotating polar reference frame attached to the position of the solar sail spacecraft

within the solar system. As the spacecraft travels along its orbit around the sun, the

e frame will slowly rotate. However, as the time scale of orbital maneuvers is very
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Payload Mass

Control Boom

Sail

Structural Booms

Figure 2.1: Square solar sail spacecraft with control boom

large compared to attitude maneuvers, the contribution of the frame velocities to the

dynamics are small enough that they will be neglected in this analysis. Figure 2.2

shows how the inertial frame of the solar system E relates to the polar frame. The

orbital dynamics are detailed in appendix B.

The assumption regarding the e frame also leads to the assumption that the only

forces acting on the sail are from the sun. Gravity acts in a negative direction along

the e1 axis, and solar radiation pressure acts in a positive direction along the same

axis. Gravity and solar radiation pressure are both assumed to be inverse square

functions of the distance from the sun. More detailed models which differ slightly

from this model can be used, but are beyond the scope of this paper. Relativity can

be used as more accurate gravitational model. The sun can be treated as a finite disc

instead of a point source of sunlight [McI99].

Other assumptions involve the nature of the solar sail spacecraft. The sail is
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Figure 2.2: Solar system inertial frame E and polar rotating frame e
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assumed to be perfectly reflecting and perfectly flat, so that the vector sum of the

incident and reflected sunlight is normal to the surface of the sail. Flexible dynamics

of the sail are not considered. Flexible modes are important, however, due to the

large size and light weight of solar sail structures, and may result in low frequency

modes that the control system may excite. However, it should be straightforward to

introduce flexible modes through careful controller design as discussed in chapter 3.

2.2 Reference Frames

The inertial reference frame, sail body frame, and control boom body frame are

represented by, respectively, e, s, and c. Angular rotations between the inertial and

body frames are represented by ϕs for the sail and ϕc for the control boom. For the

three-dimensional case, ϕs and ϕc are vectors of the Euler angles.

2.2.1 Two-Dimensional Reference Frames

The two-dimensional reference frames are shown in figures 2.3 and 2.4. The angles

used for transformation between the inertial and body frames are included in the fig-

ures. The angular velocities of the sail and control boom frames are given in equations

2.1 and 2.2, respectively. Together with the transformation operators described in

section 2.2.3, this describes the two-dimensional reference frames completely. Again,

note that on the scale of the solar system, e is the same frame here as in figure 2.2.

~ωs = ϕ̇s(t)s3 (2.1)

~ωc = ϕ̇c(t)c3 (2.2)
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Figure 2.4: 2D inertial and control boom reference frames
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2.2.2 Three-Dimensional Reference Frames

The three-dimensional reference frames are shown in figures 2.5 and 2.6. The Euler

angles to transform between the inertial and body frames are shown in figures 2.7

and 2.8. Intermediate frames are used for the Euler rotations between the inertial

frame, e, and the body frames, s and c. Two intermediate frames are needed for e to

s, denoted by s′ and s′′, while only one, c′, is needed for the transformation from e to

c.

The angular velocity of the frame is described by the individual angular velocities

of each Euler angle as it rotates its respective frame. These angular velocities are

given in equations 2.3 and 2.4.

~ωs = ϕ̇s,1e3 + ϕ̇s,2s
′

2 + ϕ̇s,3s
′′

1 (2.3)

~ωc = ϕ̇c,1e3 + ϕ̇c,2c
′

2 (2.4)

2.2.3 Transformations

Transformation between the e, s, and c reference frames are accomplished via trans-

formation matrices. The matrices, for two and three dimensions, are Cs for the sail

frame, and Cc for the control boom frame. The usage of Cs and Cc is that a vector

expressed in the e frame, ~re, can be converted to a vector in the s or c frame, ~rs or

~rc, by the operation ~rs = Cs~re or ~rc = Cc~re.

The two-dimensional transformation matrices are simply functions of the single

angles, ϕs and ϕc, that the sail and control boom, respectively, are rotated with

respect to the inertial frame e. The resulting transformation matrices are given in

equation 2.5 for the sail and equation 2.6 for the control boom.
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Cs =















cosϕs(t) sinϕs(t) 0

− sinϕs(t) cosϕs(t) 0

0 0 1















(2.5)

Cc =















cosϕc(t) sinϕc(t) 0

− sinϕc(t) cosϕc(t) 0

0 0 1















(2.6)

The three dimensional transformation matrices are performed by three successive

rotations for the sail, as shown in figure 2.7, and two successive rotations for the

control boom, which is shown in figure 2.8.

The three successive transformation matrices for the sail frame are given in equa-

tions 2.7, 2.8, and 2.9.

Cs,1 =















cosϕs,1 sinϕs,1 0

− sinϕs,1 cosϕs,1 0

0 0 1















(2.7)

Cs,2 =















cosϕs,2 0 − sinϕs,2

0 1 0

sinϕs,2 0 cosϕs,2















(2.8)

Cs,3 =















1 0 0

0 cosϕs,3 sinϕs,3

0 − sinϕs,3 cosϕs,3















(2.9)

These transformations work such that the reference frames transform as s′ = Cs,1e,

s′′ = Cs,2s
′, and s = Cs,3s

′′. Thus, a single transformation from the e to s frame can

be formed by the matrix multiplication Cs = Cs,3Cs,2Cs,1.
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2.3 Inertia Tensors

Complete three-dimensional inertia tensors are developed for the two pieces of the

solar sail - the sail (including booms) and the control boom (including payload). The

full derivation is given in appendix A.

The derivation assumes that the sail is a very thin flat, square plate with four

booms of very thin width extending from the center of the sail to the four corners.

Thus, the final sail inertia tensor depends on the areal density of the sail, sail di-

mensions, linear density of the structural booms, and length of the booms. It is

independent of sail thickness and structural boom width.

The control boom inertia tensor is derived under the assumption that the control

boom is very thin and that the payload mass at the end of the boom is very small

in all dimensions. Thus, the control boom inertia tensor depends only on the linear

density of the control boom, control boom length, and mass of the payload. It is

independent of control boom width and payload dimensions.

The inertia tensor calculations begin by assuming that all parts (sail, booms, and

payload) are rectangular solids for ease of derivation. Then, the assumptions of very

small sail thickness, boom width, and payload size simplify the inertia tensor to its

final form. Because the sail is extremely thin (1-8 µm) and the other structural mem-

bers are very slender, these are valid assumptions. However, the rotational dynamics

are developed such that any inertia tensor can be used, with or without simplify-

ing assumptions. These assumptions are used, however, for the example solar sail

spacecraft.

The inertia tensor is derived from the fundamental formula for the mass moment

of inertia, given in equation 2.10. This integral is carried out over the sail and control

boom as described in figures 2.5 and 2.6.

I =
∫

m
r2dm (2.10)
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The resulting inertia tensor of the combined sail film and structural booms is in

equation 2.11. The σs terms correspond to the sail film, while the σb terms come from

the structural booms.

Is =















2
3
w4σs + 4

3
w3σb 0 0

0 1
3
w4σs + 2

3
w3σb 0

0 0 1
3
w4σs + 2

3
w3σb















(2.11)

The resulting inertia tensor for the combined control boom and payload in the

control boom reference frame is in equation 2.12. The σc terms refer to the control

boom, while the mp terms come from the payload mass.

Ic =















0 0 0

0 l2cmp + 1
3
l3cσc 0

0 0 l2cmp + 1
3
l3cσc















(2.12)

2.4 Two-dimensional Dynamics

The planar rotational dynamics of the solar sail described in section 2.1 are developed.

2.4.1 Reference Frames

The dynamics are developed by starting with the two-dimensional reference frames

shown in figures 2.3 and 2.4 and discussed in section 2.2.

2.4.2 Position Vectors and Constraints

Next, position vectors and generalized coordinate vectors are defined for the sail and

control boom. The position vectors, ~rs and ~rc, contain coordinates in the e1 and e2

plane of the inertial frame, given as values of xs,1, xs,2, xc,1, and xc,2. These vectors

are shown graphically in figures 2.3 and 2.4. The generalized coordinate vectors, ~qs
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and ~qc, contain these same coordinates, plus the angular positions of the sail and

control boom, ϕs and ϕc. Each of these coordinates is a function of time.

The position and generalized coordinate vectors for the sail are given in equations

2.13 and 2.14. The position and generalized coordinate vectors for the control boom

are given in equations 2.15 and 2.16. The total generalized coordinate vector is given

in equation 2.17.

~rs = xs,1(t) e1 + xs,2(t) e2 (2.13)

~qs =
[

xs,1(t) xs,2(t) ϕs(t)

]

(2.14)

~rc = xc,1(t) e1 + xc,2(t) e2 (2.15)

~qc =
[

xc,1(t) xc,2(t) ϕc(t)

]

(2.16)

~q =
[

xs,1(t) xs,2(t) ϕs(t) xc,1(t) xc,2(t) ϕc(t)

]

(2.17)

Next, the constraints of the system are defined. The control boom is attached

to the center of the sail, with a distance lc from the control boom center-of-mass to

the sail center-of-mass. This sets both the relative positions of the sail and control

boom, as well as the orientation of the control boom. The boom must be aligned

along the vector describing the difference between the positions of sail and control

boom. These requirements define the vector that describes the difference between the

control boom and sail positions. This vector must have a magnitude of lb, which is

equal to the distance between the center of masses of the control boom and sail. The

direction of the vector is the same as the vector that lies along the axis of the boom,

c1. This equality constraint (~g = 0) can be described in one vector equation, as given

in equation 2.18. Note that this equation can be used in two or three dimensions.

The component form of ~g is given in equation 2.19, expressed in the e frame.

~g = ~rc − ~rs − lb c1 = ~0 (2.18)
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~g = (−lb cosϕc(t) + xc,1(t) − xs,1(t)) e1 +

(−lb sinϕc(t) + xc,2(t) − xs,2(t)) e2 = ~0 (2.19)

In the two-dimensional problem, this will result in two scalar constraint equations,

corresponding to the two dimensions of the constraint vector. Thus, two Lagrange

multipliers, named λ1 and λ2, are necessary for the dynamics.

2.4.3 Velocity Vectors

The linear velocities are simply the time derivatives of the positions. The angular

velocities are the same as those of the reference frames, in equations 2.1 and 2.2. The

linear velocities are given in equations 2.20 and 2.21.

~vs = ẋs,1(t) e1 + ẋs,2(t) e2 (2.20)

~vc = ẋc,1(t) e1 + ẋc,2(t) e2 (2.21)

2.4.4 Kinetic Energy

The kinetic energy is derived from the fundamental formula for rigid bodies. This is

given in equation 2.22.

T =
1

2
m~v · ~v +

1

2
~ω · I ~ω (2.22)

The kinetic energy of the sail, control boom, and the sum of the two are given in

equations 2.23, 2.24, and 2.25 respectively. Note that the terms Is,3 and Ic,3 are the

third elements of the diagonal inertia tensor. These calculations assume a symmetric

sail and control boom, so that off-diagonal terms are zero. However, the form given

is general and it can be used with any diagonal inertia tensor, not just the tensor

described in section 2.3.
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Ts =
1

2
ms~vs · ~vs +

1

2
~ωs · Is~ωs

=
1

2
ms

(

ẋ2
s,1 + ẋ2

s,2

)

+
1

2
Is,3ϕ̇

2
s (2.23)

Tc =
1

2
mc~vc · ~vc +

1

2
~ωc · Ic~ωc

=
1

2
mc

(

ẋ2
c,1 + ẋ2

c,2

)

+
1

2
Ic,3ϕ̇

2
c (2.24)

T = Ts + Tc

=
1

2
ms

(

ẋ2
s,1 + ẋ2

s,2

)

+
1

2
Is,3ϕ̇

2
s +

1

2
mc

(

ẋ2
c,1 + ẋ2

c,2

)

+
1

2
Ic,3ϕ̇

2
c (2.25)

2.4.5 Free-Body Diagram and Forces

Free-body diagrams of the sail and control boom are shown in figures 2.10 and 2.11.

Gravity acts on both bodies, and is a conservative force. Radiation pressure from

sunlight acts on the sail and is a non-conservative force.

Gravity

Gravity is a conservative force, as it varies only with the distance from the sun.

Gravity is proportional to the inverse square of the distance from the sun, r. The

magnitude is the product of the gravitational parameter of the sun, µs, and the mass

of the body, m, which may be the sail, ms, or the control boom, mc. The gravitational

force is given by equation 2.26. See B.3 in appendix B for detail.

~Fg = −
µs m

r2
e1 (2.26)

The gravitational force will change as the sail moves around the sun if the distance

from the sun, r, changes. This is accounted for in the trajectory simulations in

chapter 4, but for purposes of linearizing the system and calculating an LQR controller

for attitude control, r is assumed to be constant over short time periods.
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Radiation Pressure

This section draws heavily from the “Solar radiation pressure” chapter of [McI99].

Solar radiation pressure is non-conservative because the force produced by the sunlight

varies with the angle of the sail as well as the inverse square of the distance from the

sun.

Solar radiation pressure arises from the momentum present in any flux of electro-

magnetic radiation. The momentum carried by a quantity of energy can be derived

from the mass-energy equivalence of special relativity. Equation 2.27 shows this re-

lationship, where E is energy, m0 is the rest mass (zero for energy), c is the speed of

light, and p is the momentum.

E2 = m2
0c

4 + p2c2 (2.27)

Taking the time derivative, setting m0 = 0, and dividing through by area gives

the simple result shown in equation 2.28, where P is the pressure acting on an object

and W is the intensity (power per unit area) of the electromagnetic energy absorbed

by the object.

P =
W

c
(2.28)

In the case of a solar sail, the force is proportional to the sail area, As, and the

intensity is proportional to the inverse square of the distance from the sun, r. The

intensity at some reference radius from the sun is given by W0, so that W = W0

r2 .

Perfectly reflected sunlight will give an equal and opposite reaction, thus doubling

the force and acceleration for a sail oriented normal to the incident sunlight. The

force acting on a sail in this orientation can then be given by equation 2.29.

~Fs =
2 As W0

r2
e1 (2.29)
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A useful way to express solar sail performance is to use the ratio of solar to

gravitational forces, which will be called β. Thus, β can be expressed as given in

equation 2.30. The nominal magnitude of the force due to sunlight is then given by

equation 2.31.

β =
2 As W0

µs ms

(2.30)

∣

∣

∣

~Fs

∣

∣

∣ =
β µs ms

r2
(2.31)

The solar force vector, ~Fs,r, is the vector sum of the sunlight incident on the sail

and the sunlight reflected from the sail. Assuming perfect reflection, the magnitude of

the incident and reflected sunlight will vary as e1 · s1 or cosϕs(t), because the frontal

area presented to the sunlight will vary as such with the sails angle with respect to

the sunlight.

Figure 2.9 shows how the incident and reflected force vectors add together. ~fi is

the incident sunlight force vector, and ~fr is the reaction force vector from the reflected

sunlight. By the law of cosines, the total radiation pressure force is found to have a

magnitude equal to that of the nominal force multiplied by cosϕs, which is given in

equation 2.32.

~Fs,r =
β µs ms

r2
cos2 ϕs(t) s1 (2.32)

Control Moment

The control input torque, M(t), is applied at the joint between the sail and control

boom, for the purposes of rotating the boom to offset the center of gravity from the

center of radiation pressure. M(t) acts in a positive polar direction (ϕc) on the control

boom, and a negative direction (ϕs) on the sail.
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Figure 2.9: Solar radiation pressure force vector

Total Forces and Moments

The forces and moments, expressed in the inertial e frame, are shown in equations

2.33, 2.34, 2.35, 2.36, and 2.37.

~Fs,g = −
µsms

r2
e1 (2.33)

~Fc,g = −
µsmc

r2
e1 (2.34)

~Ms = −M(t) e3 (2.35)

~Mc = M(t) e3 (2.36)

~Fs,r =
βµsms

r2
cos3 ϕs(t) e1 +

βµsms

r2
cos2 ϕs(t) sinϕs(t) e2 (2.37)
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2.4.6 Potential Energy

The potential energy is a function of the conservative forces − ~Fc and the position

vector ~R over which the conservative force acts. For both the sail and control boom,

the conservative force is gravity. The position vector must begin at the source of

the conservative force. Because gravity begins at the center of the solar system, ~R

must be the sum of the vector from the center of the solar system to the e frame–

r e1 (see appendix B)–and the position of the sail or control boom in the e frame,

~rs and ~rc respectively. The potential energy is calculated using the relation given in

equation 2.38.

V = −
∫

~Fc · δ ~R (2.38)

Because r e1 is constant for this problem, the variation δ ~R is only a function of

~rs for the sail and ~rc for the control boom. The potential energy of the sail, control

boom, and the total are given in equations 2.39, 2.40, and 2.41.

Vs = −
∫

~Fs,g · δ~rs

=
µsms

r2
xs,1(t) (2.39)

Vc = −
∫

~Fc,g · δ~rc

=
µsmc

r2
xc,1(t) (2.40)

V =
µsms

r2
xs,1(t) +

µsmc

r2
xc,1(t) (2.41)

2.4.7 Non-Conservative Generalized Force Vector

The non-conservative generalized force vector, ~Qnc, is found from the virtual work

performed by the non-conservative moments and force ~Ms, ~Mc, and ~Fs,r. The virtual

work, δW , done by the non-conservative forces is given in equation 2.42.
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δW = ~Fs,r · δ~rs + ~Mc · δϕce3 + ~Ms · δϕse3

=
βµsms

r2
cos3 ϕs(t)δxs,1 +

βµsms

r2
cos2 ϕs(t) sinϕs(t)δxs,2 +

M(t)δϕc −M(t)δϕs (2.42)

The general form of ~Qnc is given in equation 2.43. ~Qnc for the two-dimensional

solar sail problem is given in equation 2.44

~Qnc =
δW

δ~q
(2.43)

~Qnc =



































βµsms

r2 cos3 ϕs(t)

βµsms

r2 cos2 ϕs(t) sinϕs(t)

−M(t)

0

0

M(t)



































(2.44)

2.4.8 Lagrange’s Equations of Motion

The Lagrangian equations of motion are found from the Lagrangian, L, the con-

straints, ~g, and their corresponding Lagrange multipliers, ~λ, and the generalized non-

conservative force vector. The Lagrangian is the difference between the kinetic and

potential energies, L = T − V . The formula for Lagrange’s equations is given in

equation 2.45. The variable p is the number of scalar constraint equations on the

system.

∂L

∂qk
−

d

dt

(

∂L

∂q̇k

)

+Qnc,k

p
∑

j=1

λj
∂gj

∂qk
= 0 , k = 1 . . . 6 (2.45)

The result of substituting in T , V , ~g, ~λ, and ~Qnc is given in equations 2.46 through

2.51.
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βµsms

r2
cos3 ϕs(t) − λ1 −

µsms

r2
−msẍs,1(t) = 0 (2.46)

−λ2 +
βµsms

r2
cos2 ϕs(t) sinϕs(t) −msẍs,2(t) = 0 (2.47)

−M(t) − Is,3ϕ̈s(t) = 0 (2.48)

λ1 −
µsmc

r2
−mcẍc,1 = 0 (2.49)

λ2 −mcẍc,2 = 0 (2.50)

−lbλ2 cosϕc(t) + lbλ1 sinϕc(t) +M(t) − Ic,3ϕ̈c(t) = 0 (2.51)

We are only interested in the angular accelerations, ϕ̈s(t) and ϕ̈c(t). The solution

is found by using these six equations for the six unknown state accelerations, and

the two constraint equations for the unknown Lagrange multipliers. This solution is

given in equations 2.52 and 2.53.

ϕ̈s(t) = −
M(t)

Is,3
(2.52)

ϕ̈c(t) =
msM(t) +mc

[

βµsms

r2 lb cos2 ϕs(t) sin (ϕc(t) − ϕs(t)) +M(t)
]

msIc,3 +mc (l2bms + Ic,3)
(2.53)

2.5 Three-Dimensional Dynamics

The three-dimensional dynamics of the solar sail are developed. The same procedure

that was used for the two-dimensional case in section 2.4 are used here.

2.5.1 Reference Frames

The three-dimensional reference frames described in section 2.2 are used to develop

the dynamics.
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2.5.2 Position Vectors and Constraints

As in the two-dimensional case (section 2.4.2), position and generalized coordinate

vectors are defined for the sail and control boom. Each position vector, ~rs and ~rc, has

one more term in the e3 direction. The generalized coordinate vector adds two linear

position terms for the third dimension of the sail and control boom, two more Euler

angles for the sail, and one more Euler angle for the control boom. These terms are

represented graphically in figures 2.5, 2.6, 2.7, and 2.8.

The position and generalized coordinate vectors for the sail and control boom are

given in equations

~rs = xs,1(t)e1 + xs,2(t)e2 + xs,3(t)e3 (2.54)

~qs = [xs,1(t), xs,2(t), xs,3(t), ϕs,1(t), ϕs,2(t), ϕs,3(t)] (2.55)

~rc = xc,1(t)e1 + xc,2(t)e2 + xc,3(t)e3 (2.56)

~qc = [xc,1(t), xc,2(t), xc,3(t), ϕc,1(t), ϕc,2(t)] (2.57)

~q = [xs,1(t), xs,2(t), xs,3(t), ϕs,1(t), ϕs,2(t), ϕs,3(t),

xc,1(t), xc,2(t), xc,3(t), ϕc,1(t), ϕc,2(t)] (2.58)

The three-dimensional constraints use the same generalized constraint on the sail

control boom as the two-dimensional case, which is given in equation 2.18. The

constraint vector specific to three-dimensions is then found by substituting in the

three-dimensional position vectors, giving the result in equation 2.59.

~g = (xc,1(t) − xs,1(t) − lb cosϕc,2(t) cosϕc,1(t)) e1 +

(xc,2(t) − xs,2(t) − lb cosϕc,2(t) sinϕc,1(t)) e2 +

(xc,3(t) − xs,3(t) + lb sinϕc,2(t)) e3 (2.59)
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2.5.3 Velocity Vectors

The three-dimensional velocities are the time derivatives of the positions. These are

given in equation 2.60 for the sail and equation 2.61 for the control boom. The angular

velocity vectors are given in equations 2.3 and 2.4.

~vs = ẋs,1(t)e1 + ẋs,2(t)e2 + ẋs,3(t)e3 (2.60)

~vc = ẋc,1(t)e1 + ẋc,2(t)e2 + ẋc,3(t)e3 (2.61)

2.5.4 Kinetic Energy

The three-dimensional kinetic energy is found using the same fundamental formula

as the two-dimensional case, which is given by equation 2.22. The kinetic energies of

the sail, control boom, and total for the three dimensional case are given by equations

2.62, 2.63, and 2.64.

Ts =
1

2
ms~vs · ~vs +

1

2
~ωs · Is~ωs

=
1

2
ms

[

ẋ2
s,1(t) + ẋ2

s,2(t) + ẋ2
s,3(t)

]

+

1

2

{

Is,1 [− sinϕs,1(t)ϕ̇s,2(t) + cosϕs,1(t) cosϕs,2(t)ϕ̇s,3(t)]
2 +

Is,2 [cosϕs,1(t)ϕ̇s,2(t) + sinϕs,1(t) cosϕs,2(t)ϕ̇s,3(t)]
2 +

Is,3 [ϕ̇s,1(t) − sinϕs,2(t)ϕ̇s,3(t)]
2
}

(2.62)

Tc =
1

2
mc~vc · ~vc +

1

2
~ωc · Ic~ωc

=
1

2
mc

(

ẋ2
c,1(t) + ẋ2

c,2(t) + ẋ2
c,3(t)

)

+

1

2

[

Ic,1 sin2 ϕc,1(t)ϕ̇
2
c,2(t) + Ic,2 cos2 ϕc,1ϕ̇

2
c,2(t) + Ic,3ϕ̇

2
c,1(t)

]

(2.63)

T = Ts + Tc (2.64)
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Figure 2.12: 3D Sail Free-Body Diagram

2.5.5 Free-Body Diagram and Forces

Free-body diagrams of the sail and control boom are shown in figures 2.12 and 2.13.

Except for being expressed in three-dimensions, these forces are the same as those in

the two-dimensional problem.

The conservative forces are gravity acting on the sail and control boom. These

follow an identical model to the two-dimensional case, because gravity acts along the

e1 axis regardless of whether the problem is two- or three-dimensional.

The non-conservative forces are the solar radiation force acting on the sail and

a control moment vector. The solar radiation force is almost identical to the two-

dimensional case, in that it acts along the s1 axis. Thus, ~Fs,r for the three-dimensional

case has the form given in equation 2.32. The only difference is that the s1 axis is

different, because of the two additional Euler angles. The control moment vector now

has two magnitude components, each of which acts on one of the Euler angles of the
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control boom. M1(t) acts on e3, and M2(t) acts on c′2. An equal and opposite torque

acts on the sail. This allows the center of mass of the entire system to be moved over

a hemisphere on the side of the sail which the control boom is mounted.

The forces and moments are shown in equations 2.65, 2.66, 2.68, 2.67, and 2.69.

~Fs,g = −
µsms

r2
e1 (2.65)

~Fc,g = −
µsmc

r2
e1 (2.66)

~Mc = M1(t)e3 +M2(t)c
′

2

= −M2(t) sinϕc,1(t) e1 +M2(t) cosϕc,2(t) e2 +M1(t) e3 (2.67)

~Ms = − ~Mc

= M2(t) sinϕc,1(t) e1 −M2(t) cosϕc,2(t) e2 −M1(t) e3 (2.68)

~Fs,r =
βµsms

r2
cos3 ϕs,1(t) cos3 ϕs,2(t) e1 +

βµsms

r2
cos2 ϕs,1(t) cos3 ϕs,2(t) sinϕs,1(t) e2 +

βµsms

r2
cos2 ϕs,1(t) cos2 ϕs,2(t) sinϕs,2(t) e3 (2.69)

2.5.6 Potential Energy

The potential energy of the three-dimensional case is calculated from the general ex-

pression given in equation 2.38. As with the gravitational forces, the three-dimensional

potential energy terms are identical to the two-dimensional case. The sail, control

boom, and total potential energy are given in equations 2.70, 2.71, and 2.72.

Vs = −
∫

~Fs,g · δ~rs

=
µsms

r2
xs,1(t) (2.70)

Vc = −
∫

~Fc,g · δ~rc

=
µsmc

r2
xc,1(t) (2.71)
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V =
µsms

r2
xs,1(t) +

µsmc

r2
xc,1(t) (2.72)

2.5.7 Non-Conservative Generalized Force Vector

At this point, the three-dimensional calculations become far more cumbersome than

the two-dimensional case. As part of this work, the calculations were carried out to

their conclusion using Mathematica [mat00]. For this document, however, the rest

of the three-dimensional dynamics derivation will be outlined, with important results

presented in detail.

The virtual work done by the three-dimensional non-conservative forces and mo-

ments is found from equation 2.73.

δW = ~Fs,r · δ~rs +

~Mc · (δϕc,1e3 + δϕc,2c
′

2) +

~Ms · (δϕs,1e3 + δϕs,2s
′

s + δϕs,3s
′′

1) (2.73)

The non-conservative generalized force vector is then found from δW using the

general equation 2.43. The elements of ~Qnc are given in equations 2.74 to 2.84

Qnc,xs,1
=

βµsms

r2
cos3 ϕs,1(t) cos3 ϕs,2(t) (2.74)

Qnc,xs,2
=

βµsms

r2
cos2 ϕs,1(t) cos2 ϕs,2(t) sinϕs,1(t) (2.75)

Qnc,xs,3
= −

βµsms

r2
cos2 ϕs,1(t) cos2 ϕs,2(t) sinϕs,2(t) (2.76)

Qnc,ϕs,1
= −M1(t) (2.77)

Qnc,ϕs,2
= −M2(t) [cosϕc,1(t) cosϕs,1] +

−M2(t) [sinϕc,1(t) sinϕs,1(t)] (2.78)

Qnc,ϕs,3
= M1(t) sinϕs,2(t) +

M2(t) [cosϕs,1(t) cosϕs,2(t) sinϕc,1(t)] +
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−M2(t) [cosϕc,1(t) cosϕs,2(t) sinϕs,1(t)] (2.79)

Qnc,xc,1
= 0 (2.80)

Qnc,xc,2
= 0 (2.81)

Qnc,xc,3
= 0 (2.82)

Qnc,ϕc,1
= M1(t) (2.83)

Qnc,ϕc,2
= M2(t)

[

cos2 ϕc,1(t) + sin2 ϕc,1(t)
]

(2.84)

2.5.8 Lagrange’s Equations of Motion

The equations of motion of the three-dimensional sail are then found from Lagrange’s

equations as given in equation 2.45.
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Chapter 3

ATTITUDE CONTROLLER DESIGN

3.1 Introduction

This chapter begins where the chapter on rotational dynamics left off. Chapter 2

finished by developing differential equations describing the angular accelerations of

the sail and the control boom. This chapter continues by developing a rotational state

model of the sail. The non-linear model is linearized, and the process of developing

an LQR controller for the angular position of the sail is detailed.

3.2 Model

The rotational solar sail model is developed using the reference frames and equations

of motion from chapter 2. First, a state vector is defined of the angular positions

and velocities of the sail. These states are identical to the generalized coordinates of

the same name described in equations 2.14 and 2.16. This state vector is given in

equation 3.1.

~x(t) =





















x1(t)

x2(t)

x3(t)

x4(t)





















=





















ϕs(t)

ϕc(t)

ϕ̇s(t)

ϕ̇c(t)





















(3.1)

A state model of the form described in equation 3.2 is desired for the solar sail.

Note that the model is a linear combination of non-linear functions of the state,

~x(t), and the control, ~u(t). This is a consequence of the solar sail dynamics, as
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will be shown, and not a simplifying assumption. This helps simplify the process

of linearizing the system. The vector functions ~a and ~b, which may be non-linear,

correspond to the A and B matrices of linear state-space models.

~̇x(t) = ~f(~x, u, t) = ~a(~x, t) +~b(~u, t) (3.2)

3.2.1 Nonlinear State Model

The non-linear state model includes the equations of motion from chapter 2, which are

the time rate of change of the angular velocity states, x3(t) and x4(t). Added to this

are equations for the time rate of change of the angular position states, x1(t) and x2(t).

Before separating the model into state and control input responses as in equation 3.2,

the non-linear model is expressed as in equation 3.3. In the two-dimensional case,

~u(t) is simply the scalar function M(t).

~f(~x, ~u, t) =























ϕ̇s(t)

ϕ̇c(t)

−M(t)
Is,3

ms M(t)+mc[β µs ms

r2
lb cos2 ϕs(t) sin(ϕc(t)−ϕs(t))+M(t)]

ms Ic,3+mc(l2
b
ms+Ic,3)























(3.3)

The control input, M(t), can be separated out from the state responses. The

non-linear model is given once more in equation 3.4 with the control input separated

out and represented by u(t), and the states represented by ~x(t). This matches the

form of equation 3.2.

~f(~x, u, t) =























x3(t)

x4(t)

0
mc

βµsms

r2
lb cos2 x1(t) sin(x2(t)−x1(t))

msIc,3+mc(l2
b
ms+Ic,3)























+























0

0

− 1
Is,3

ms+mc

msIc,3+mc(l2
b
ms+Ic,3)























u(t) (3.4)
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3.2.2 Linearized State Model

The linearized model is found by determining equilibrium points of the non-linear

dynamics, then linearizing the dynamics over small displacements in the states using

a Taylor series expansion of each state equation. The end result will be the general

linear system model given in equation 3.5. Note the similarities to equation 3.2.

~̇x(t) = ~f(~x, u, t) = A~x(t) +B ~u(t) (3.5)

The equilibrium points are found by setting ~a(~x, u, t) + ~b(u, t) = 0 and solving

for the states. The solution is a set of equilibrium states, ~xeq, which are given in

equation 3.6.

~xeq =





















x1,eq

x2,eq

x3,eq

x4,eq





















=





















x1,eq

x1,eq

0

0





















(3.6)

Note that x1 (ϕs) is arbitrary, and that x2,eq = x1,eq. This results from the fact

that no net torque will act on the sail at any angle so long as the center of mass

of the control boom and sail are aligned. The equilibrium control, ueq, is equal to

zero. Thus, the state equations can be linearized about almost any desired solar sail

angle. Note from the non-linear state model (equation 3.4), however, that as x1,eq

approaches π
2
, the ẋ4 term approaches zero. This will be shown to limit the range of

sail angles, ϕs, that LQR control can handle.

The model is linearized by taking the first order terms of the Taylor series expan-

sion of ~f(~x, u, t) about ~xeq. The series is carried out by the expression in equation 3.7.

Note that for this case, n = 4, the number of states. Only partial derivatives of ~x are

carried out, as ueq = 0 and the equations are autonomous, i.e. not functions of the

time t. ∆~x is the variation of ~x(t) away from equilibrium. ∆u is the variation of u(t)
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away from equilibrium.

fi(~x, ~u, t) ' fi(~xeq, ~ueq, teq) +
n
∑

j=1

∂fi

∂xj

∣

∣

∣

∣

∣

~x=~xeq

δxj for i=1. . . n (3.7)

Carrying out the linearization of equations 3.3 or 3.3 results in the linearized plant

model. The initial results are given in equation 3.8. Note that the part of equation 3.4

corresponding to the control input (~b(u, t)) is already linear, so only ~a(~x, t) needs to

be linearized.

~flin(~x, u, t) =























∆x3

∆x4

0
mclb cos2 x1,eq

βµsms

r2

msIc,3+mc(l2
b
ms+Ic,3)

(∆x2 − ∆x1)























+























0

0

− 1
Is,3

ms+mc

msIc,3+mc(l2
b
ms+Ic,3)























∆u(t)

(3.8)

The final model is formed by separating out the ~x vector from the first term of

equation 3.8. This result is given in equation 3.9.

~flin(∆~x,∆u, t) =























0 0 1 0

0 0 0 1

0 0 0 0

−
mclb cos2 x1,eq

βµsms

r2

msIc,3+mc(l2
b
ms+Ic,3)

mclb cos2 x1,eq
βµsms

r2

msIc,3+mc(l2
b
ms+Ic,3)

0 0























∆~x(t) + . . .

. . .+























0

0

− 1
Is,3

ms+mc

msIc,3+mc(l2
b
ms+Ic,3)























∆u(t) (3.9)

For the purposes of this analysis, the C matrix is assumed to be identity, and the

D matrix is assumed to be all zeros. Thus, the output ~y(t) is simply equal to ~x(t).
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These are given in equation 3.10. Equations 3.9 and 3.10 provide a complete state

space description of the linearized rotational dynamics of the solar sail about ~xeq.

~y(t) =





















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1





















∆~x(t) +





















0

0

0

0





















∆u(t) (3.10)

3.3 System Analysis

The linear solar sail model given in equations 3.9 and 3.10 is now analyzed to deter-

mine controllability, system poles, and system zeros. The techniques used here are

described in detail in [Ly00].

3.3.1 Controllability

Controllability is determined from the rank of the controllability matrix. The rank

must equal the number of states in the system, which is four for the two-dimensional

case. The controllability matrix for the system is built from the state space matrices

A and B using equation 3.11. The specific controllability matrix for the solar sail is

shown in equation 3.12.

C =
[

B AB A2 B A3 B

]

(3.11)

C =























0 − 1
Is,3

0 ms+mc

mc (l2
b

ms+Ic,3)+Ic,3 ms

− 1
Is,3

0

ms+mc

mc (l2
b

ms+Ic,3)+Ic,3 ms
0

. . .
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. . .

0

0

0

β lb mc ms µs cos2 x1,eq

Is,3 (mc (l2
b

ms+Ic,3)+Ic,3 ms) r2
+ β lb mc ms (ms+mc) µs cos2 x1,eq

(mc (l2
b

ms+Ic,3)+Ic,3 ms)
2

r2

. . .

. . .

0

β lb mc ms µs cos2 x1,eq

Is,3 (mc (l2
b

ms+Ic,3)+Ic,3 ms) r2
+ β lb mc ms (ms+mc) µs cos2 x1,eq

(mc (l2
b

ms+Ic,3)+Ic,3 ms)
2

r2

0

0























(3.12)

All parameters except x1,eq in the controllability matrix are constants dependent

on the solar sail characteristics and the distance from the sun, r. At all values of x1,eq

except for π
2
, the controllability matrix has a rank of four. At π

2
, the controllability

matrix has a rank of only two. Thus, the sail is only uncontrollable when the angular

position of the sail is π
2
. This can be clearly seen by looking at C in equation 3.13.

C|x1,eq=π
2

=























0 − 1
Is3

0 0

0 ms+mc

mc (l2
b

ms+Ic3)+Ic3 ms
0 0

− 1
Is3

0 0 0

ms+mc

mc (l2
b

ms+Ic3)+Ic3 ms
0 0 0























(3.13)

This can be explained by the fact that the sail will be edge-on to the sun at

x1,eq = π
2
, and not receive any torque from sunlight. However, as can be seen from

the non-linear equations of motion (equations 2.52 and 2.53), a torque can be exerted

purely from the control boom. Thus, although feedback control as with LQR will not

work, we can expect that some form of feed-forward control will allow control of the

sail around x1,eq = π
2
. For other values of x1,eq that are sufficiently removed from π

2
,

the system is controllable and LQR control can be expected to work.
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3.3.2 System Poles

The system poles are found by calculating the eigenvalues of the A matrix. This

result, called ~λ, is given in equation 3.14. There is a double-pole at the origin, and

two other poles which will either be zero, negative, or positive depending on the value

of x1,eq. Clearly, a controller is necessary for stability.

~λ =























− cos x1,eq

r

√

β lb mc ms µs

l2
b

mc ms+Ic,3 ms+Ic,3 mc

cos x1,eq

r

√

β lb mc ms µs

l2
b

mc ms+Ic,3 ms+Ic,3 mc

0

0























(3.14)

3.4 LQR Controller

A linear quadratic regulator (LQR) is now developed to control the solar sail attitude.

The technique used is detailed in [Bur99].

3.4.1 Implementation

A steady state LQR is found using the linear plant given in equation 3.15 and

quadratic cost function given in equation 3.16. Note that the cost function does

not use ~y(t), as the C matrix is assumed to be identity from equation 3.10.

~̇x(t) = A ~x(t) +B ~u(t) (3.15)

J (~x(t), ~u(t)) =
1

2

∫

∞

0

[

~xT (t)Q ~x(t) + ρ ~uT (t)R ~u(t)
]

dt (3.16)

The Q and R matrices are chosen to weight the cost of the states and inputs,

respectively. The scalar parameter ρ is chosen to weight the states in relation to the

control. In the case of the solar sail, ~u(t) is a scalar, so the R matrix is simply a

constant.
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The Q matrix is chosen to set costs which will retain the states within desired

or mechanical limits of the system about equilibrium (equation 3.6). Very tight

tolerances are desired on the sail angular position, to ensure accurate pointing of

the solar radiation force vector. The control boom can be more relaxed, in order to

allow some range of motion to induce control torques. There is a physical limitation

of π
2
, to prevent the control boom from impacting the sail. The sail angular velocity

should be low, in order to avoid excitation of vibrational modes. The control boom

angular velocity can be more relaxed as well to allow for quicker response times.

With these conditions in mind, the Q matrices can be constructed by choosing

reasonable maximums. These are given in equation 3.17. It will be shown in the

examples that these values will work for a variety of specific solar sail models. An

iterative approach was, however, used to verify these results.





















ϕs,max

ϕc,max

ϕ̇s,max

ϕ̇c,max





















=





















0.01 radian

π
2

radian

0.1 radians/sec

0.2 radians/sec





















(3.17)

From these maxima, the Q matrix is constructed as a diagonal matrix of the

inverse squares of the maximum states. This result is shown in equation 3.18.

Q =























1
ϕ2

s,max
0 0 0

0 1
ϕ2

c,max
0 0

0 0 1
ϕ̇2

s,max
0

0 0 0 1
ϕ̇2

c,max























=





















10000 0 0 0

0 4
π2 0 0

0 0 100 0

0 0 0 25





















(3.18)

The value of R and ρ are not so straightforward to find. First, a reasonable

maximum torque for the control boom was assumed to be 10 N m (R = 1/umax =

1
10

), and a control weight (ρ) of 1 were selected. However, these values resulted in

control torques that were much higher than desired when the system was given a step
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command to the sail and control boom positions. Through the testing discussed in

chapter 4, it was found that a very heavy cost on the control was required to keep

the control torque below 10 N m for unit step reference commands. The values for R

and ρ are shown in equations 3.19 and 3.20.

R = 1 (3.19)

ρ = 100 (3.20)

The specific cost function used is then given by equation 3.21.

J (~x(t), u(t)) =
1

2

∫

∞

0
~xT (t)





















10000 0 0 0

0 4
π2 0 0

0 0 100 0

0 0 0 25





















~x(t) + 100 u2(t) dt (3.21)

The steady-state LQR gain matrix K can then be calculated for specific solar

sails from the cost function J and specific system A and B matrices using different

techniques, such as the Ricatti equation, an eigenvector solution algorithm of the

Hamiltonian system [Bur99], or Schur decomposition [mat99]. The Matlab Control

Systems Toolbox [mat99] was used to carry out this calculation in chapter 4 for a

number of specific solar sail models. These models are then run through a series of

tests to study the effectiveness of the LQR method in controlling a solar sail.

3.4.2 Closed Loop System

The closed-loop system for controlling the sail attitude is now described. The system

includes the non-linear system in equation 3.4, the LQR gain matrix, the desired

reference input sail position, and the radius from the sun. The block diagram for this

system is shown in figure 3.1. Note the conversion factor on the control, u, from any

unspecified time unit, TU, to a torque with seconds in the units.
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2

Control input u
kg m^2/s^2

1

States
phi s
phi c

dphi s
dphi c

u

r x

Rotational
Dynamics

K

LQR
K

K

Input

K

1/TU^2

2

Distance from sun
r

1

Reference
phi s
phi c

Figure 3.1: Block diagram of 2D closed-loop solar sail rotational dynamics control.

The radius from the sun is actually included as an input for modeling the inter-

action with the orbital dynamics. This allows the non-linear rotational dynamics to

continually change as the radius from the sun changes, even though the LQR gain

was found for one particular solar radius.

The reference input allows the desired sail orientation angle to be specified, and

for the controller to move the sail to that location. As was seen in equation 3.6,

the equilibrium position of the sail is any point where the sail and control boom

angular positions are equal. Thus, the reference sail position is applied to both the

sail position, x1(t), and the control boom position, x2(t). This is achieved by the

“Input” block in figure 3.1, which multiplies the reference input, ϕs,ref (x1,ref ) by

[1 1 0 0]T . The state, ~x(t), is subtracted from the reference, [x1,ref x1,ref 0 0]T , to give

the the error which is sent to the controller, K.
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Chapter 4

ATTITUDE CONTROL SIMULATION

4.1 Introduction

This chapter runs the solar sail rotational system and LQR controller through a series

of test to determine the effectiveness of the LQR method and characterize the behavior

of the sail described in chapter 2. Three example solar sail spacecraft are presented

and used for the tests. These tests examine the short-term ability of the controller to

respond to step reference inputs, initial conditions, and the step response at varying

radii from the sun. Chapter 5 examines the ability of the controller to track solar sail

trajectories.

4.2 Example Solar Sail Spacecraft

Three solar sails models are used for examples. The first is a low-performance (higher

mass to area ratio) spacecraft modeled exactly after the ODISSEE spacecraft dis-

cussed in [McI99]. The other two models are modified from the first to have lower

mass, and thus higher acceleration and lower moments of inertia. Note that the

gravitational parameter µs is common to all of the models. The numerical value is

µs = 1.3272e20m3

s2
(1.3272 × 1020 m3

s2
).

4.2.1 Sail Characteristics

For each example sail, there is a set of physical characteristics which are used to

determine the dynamic model parameters. For example, the lengths and masses of

the booms, area and mass of the sail, and payload mass are used to calculate the
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Physical characteristics

Sail area As

Sail film mass msf

Structural boom mass msb

Payload mass mcp

Control boom mass mcb

Sail reflectivity η

Control boom length lb

Dynamic model parameters

Total control boom mass mc : mcp +mcb

Total sail mass ms : msf +msb

Control boom length lb

Ratio of solar:gravitational acceleration β

Sail moment of inertia about e3 Is,3

Control boom moment of inertia about e3 Ic,3

inertia tensors using equations 2.11 and 2.12. The total mass of the spacecraft, sail

area, and reflectivity are used to determine the performance of each sail, β, which is

the ratio of solar to gravitational acceleration. The physical characteristics and model

parameters are listed in table 4.2.1.

The specific values of the physical characteristics and dynamic model parameters

are given in table 4.1. As was mentioned previously, there are three example sail

models. The first is a low-performance sail, the second is a medium-performance sail,

and the third is a high-performance sail. Performance is measured by the area-to-mass

ratio, which is reflected by the parameter β.
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Table 4.1: Example solar sail physical characteristics and dynamic model parameters

Sail performance Low Medium High Units

Physical characteristics

As 1600 1600 1600 m2

msf 25 2.075 1 kg

msb 11 3 1.429 kg

mcp 36 5 1 kg

mcb 5 1 1 kg

η 0.85 0.90 0.90

lb 10 10 10 m

Dynamic model parameters

ms 36 5.070 2.429 kg

mc 41 6 2 kg

lb 10 10 10 m

β 0.0272 0.200 0.500

Is,3 4800 676.667 323.867 kg m4

Ic,3 3767 533.333 133.333 kg m4
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Table 4.2a: Low Performance Solar Sail State Model and Controller Gain

A =





















0 0 1 0

0 0 0 1

0 0 0 0

−1.1620e-5 1.1620e-5 0 0





















B =





















0

0

−2.0833e-4

1.7595e-4





















~a(~x, t) =





















x3(t)

x4(t)

0

1.509e-7 cos2 (x2(t) − x1(t))





















~b(u, t) =





















0

0

−2.083e-4 u(t)

1.759e-4 u(t)





















K =
[

−2.0485 12.0487 2.6425e3 3.5345e3

]

4.2.2 State Models and Controller Gains

For a majority of the tests, specific sail models are found for an equilibrium position

of ϕs,eq = ϕc,eq = 0 and a radius from the sun of r = 1 AU (1.4959965e8 km). The

state models (linear and non-linear) and controller gain matrices for the example sails

are shown in table 4.2.2. As was discussed in chapter 3, the C and D matrices of the

linear model are as given in equation 3.10.

4.3 Short-Term Rotational Responses

The example solar sail systems and controllers in section 4.2 are run through a series

of simulations to test the short-term responses to reference input commands and

initial conditions. Except for the tests of varying radius from the sun, the tests are

performed on sails that are the same distance from the sun as the Earth, that is

r = 1 AU.
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Table 4.2b: Medium Performance Solar Sail State Model and Controller Gain

A =





















0 0 1 0

0 0 0 1

0 0 0 0

−8.8025e-5 8.8025e-5 0 0





















B =





















0

0

−1.478e-3
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



















~a(~x, t) =






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











x3(t)

x4(t)

0

7.955e-6 cos2 (x2(t) − x1(t))





















~b(u, t) =





















0

0

−1.478e-3 u(t)

1.237e-3 u(t)





















K =
[

−2.139 12.140 954.166 1.2939e3

]

Table 4.2c: High Performance Solar Sail State Model and Controller Gain

A =





















0 0 1 0

0 0 0 1

0 0 0 0

−2.440e-4 2.440e-4 0 0





















B =








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
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




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0
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4.115e-3


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


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
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
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









x3(t)

x4(t)

0

5.510e-5 cos2 (x2(t) − x1(t))





















~b(u, t) =





















0

0

−3.088e-3 u(t)

4.115e-3 u(t)





















K =
[

0.280 9.720 738.584 622.202

]
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4.3.1 Reference Input Responses

Three different reference step commands are used to test the controller. Step com-

mands are issued to the sail and control boom positions of 0.2, 0.5, and 1 radian.

Also, tests with ramp inputs up to a final reference value of 1 radian were performed

to improve the sail position overshoot with the 1 radian step input. This is to test how

well the controller is able to respond to small, medium, and large reference inputs.

This also tests the ability of the controller to operate very far from the equilibrium

position at which the system was linearized for generating the LQR gain matrix.

For each test, the reference input begins at 1000 seconds. Each figure represents

a single test, with three plots showing the angular position of the sail and control

boom compared to the reference input, the angular velocities, and the control torque

output by the controller.

Small Reference Input - ϕs,ref = ϕc,ref = 0.2 radian

The low performance sail (β = 0.0272) responses are shown in figure 4.1. The response

shows that the control boom moves initially towards the desired direction, and the

sail reacts by rotating in the opposite direction. This shows that no net change

in the equilibrium position can be accomplished by the control boom alone. To

accomplish a net change in the equilibrium position (ϕs = ϕc), the control boom

must be positioned out of line with the sail for an extended period of time. This

creates an offset between the center-of-pressure of the sail and the center-of-mass of

the whole spacecraft that allows the equilibrium position to change. This response

will be seen to be characteristic of all the step input responses. The control torque

is well within the limit of 10 N m used for the cost function, the angular velocities

are kept low, and the sail and control boom angular positions move to the reference

input within ≈ 2000 seconds without overshoot.

The medium performance solar sail (β = 0.2) response is shown in figure 4.2.
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Figure 4.1: Low performance solar sail responses to 0.2 radian step input
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Figure 4.2: Medium performance solar sail responses to 0.2 radian step input

Aside from a quicker response time (< 1000 seconds), the response is very similar to

that of the low performance sail.

The high performance solar sail (β = 0.5) response is shown in figure 4.3. Again,

the response is similar, except for a ≈ 600 second response time.

Medium Reference Input - ϕs,ref = ϕc,ref = 0.5 radian

The low performance sail responses are shown in figure 4.4. Like the 0.2 radian

response, the control is smooth with no overshoot The angular velocities are a little

larger, and the control torque is about 5 times larger, but they are still well within the
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Figure 4.3: High performance solar sail responses to 0.2 radian step input
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Figure 4.4: Low performance solar sail responses to 0.5 radian step input

tolerances used for the cost function. Note that this represents a significant departure

from the equilibrium (ϕs = ϕc = 0) about which the system was linearized, but that

the controller is still functioning without any apparent problems.

The medium performance sail responses are shown in figure 4.5. Like the response

to a 0.2 radian step input, the response is similar except for the response time.

The high performance responses are shown in figure 4.6. Again, the response is

similar except for a quicker rise time.



51

0 500 1000 1500 2000 2500 3000 3500 4000
−0.5

0

0.5

1

φ s,
c,

sr
ef

 −
 r

ad

φ
s
     

φ
c
     

φ
sref

0 500 1000 1500 2000 2500 3000 3500 4000
−0.04

−0.02

0

0.02

0.04

dφ
s,

c −
 r

ad
/s

dφ
s

dφ
c

0 500 1000 1500 2000 2500 3000 3500 4000
−2

0

2

4

6

u 
−

 N
m

Time − s

Figure 4.5: Medium performance solar sail responses to 0.5 radian step input
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Figure 4.6: Low performance solar sail responses to 0.5 radian step input
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Figure 4.7: Medium performance solar sail responses to 1 radian step input

Large Reference Input - ϕs,ref = ϕc,ref = 1 radian

For all performance levels, the step response is very similar except for rise time. For

the sake of brevity, only the medium performance sail response to a 1 radian step input

will be shown. The responses of the low and high performance sails were similar.

The medium performance sail response to a 1 radian step input is shown in fig-

ure 4.7. On first glance, it is obvious that the overshoot is substantial. However,

the sail does settle to the reference input within a reasonable time (relative to the

responses to smaller step inputs). This suggests that there is a chance of improving

the response.
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Figure 4.8: Medium performance solar sail responses to 1 radian ramp input

If a ramp input is fed to the controller that stops at 1 radian and takes about

the same time to reach 1 radian as the sail takes to settle to 1 radian with a step

response, it seems likely that the sail’s response can be dramatically improved. This

response is shown in figure 4.8. This method works very well. The sail position does

have a small overshoot, but is quite manageable. Other attractive features of this

method are the extremely low control torque and long time scale of the changes in

the angular velocities. This suggests that the cost placed on the control input can be

significantly relaxed if ramp inputs were used for all maneuvers.
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Figure 4.9: Medium performance solar sail responses to 0.5 radian ramp input at radii
from the sun of 0.5, 1, 2, and 5 AU

4.3.2 Reference Input Responses at Varying Radius from the Sun

The medium performance sail is tested at various radii from the sun. A reference

input of 1 radian is used, and the radii tested are 0.5, 1, 2, and 5 radians. The

angular position responses are shown, in order of increasing distance from the sun,

in figure 4.9. These responses recalculated the state-space model and controller gain

for the different radii. The only change present is the rise time, which is expected, as

the solar radiation pressure available to turn the spacecraft decreases with increasing

radius.
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Figure 4.10: Medium performance solar sail responses with 1 AU controller to 0.5
radian ramp input at radii from the sun of 0.5, 1, 2, and 5 AU

Another interesting case to examine is how well a controller that was calculated at

only one radius from the sun will behave at varying radii. This result, for a controller

calculated at r = 1 AU, is shown in figure 4.10. Clearly, the LQR controller will need

to be racalculated as the radius from the sun changes significantly.

4.3.3 Initial Condition Responses

The initial condition responses of the system are now tested. Two sets of tests are run,

one which tests the response to angular position initial conditions, and the second

which tests the response to angular velocity initial conditions.
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Initial Angular Position Tests

Figure 4.11 shows the response of the low-performance sail to an initial condition of

ϕs = ϕc = 0.5 radian. The system responds by settling back to zero within ≈ 2000

seconds, which is about the same time the system took to respond to a step command

of 0.5 radian. The control torque is somewhat large (-5 N m), but still well within the

10 N m tolerance. The angular velocities are also kept low. This is something of a

“worst-case” scenario, because rotating the boom to correct for the initial condition

initially makes it much worse. However, as was the case with step responses, this was

necessary to change the equilibrium position.

As with the step input responses, the medium and high performance solar sails

responded almost identically except for settling time. Therefore, these responses will

not be shown.

Figure 4.12 shows the low performance solar sail response to an initial condition

of ϕs = 0.5 and ϕc = −0.5 radian. The sail is able to respond very quickly, because

simply rotating the control boom back to zero brings the sail almost back. Some

correction is needed, however, because the sail and control boom do not have identical

moments of inertia, so both will not rotate exactly back to a zero equilibrium position

from the same initial condition.

Figure 4.13 shows the response to an initial condition of ϕs = 0.5 and ϕc = 0

radian. The system is able to respond very nicely to this initial condition because

moving the control boom into position to change the equilibrium position also moves

the sail in the desired direction. Thus, the sail angular position never becomes larger

than the initial condition. However, the settling time is still about the same as for

other initial condition responses.

Figure 4.14 shows the response to an initial condition of ϕs = 0 and ϕc = 0.5. This

is another “worst-case” scenario, because although the sail angle starts out at zero,

it must be displaced by about 0.5 radian to return the control boom to equilibrium.
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Figure 4.11: Low performance solar sail responses to ϕs = ϕc = 0.5 radian initial
condition.
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Figure 4.12: Low performance solar sail responses to ϕs = ϕc = 0.5 radian initial
condition.
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Figure 4.13: Low performance solar sail responses to ϕs = ϕc = 0.5 radian initial
condition.
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Figure 4.14: Low performance solar sail responses to ϕs = ϕc = 0.5 radian initial
condition.
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Figure 4.15: Low performance solar sail responses to ϕ̇s = 0.005 radian per second
initial condition.

These tests show that the system is able to respond very well to initial angular

positions.

Initial Angular Velocity Tests

Figure 4.15 shows the response of the low performance sail to an initial condition

of ϕ̇s = 0.005 and ϕ̇c = 0 radian per second. Clearly, the system is unable to

compensate for this initial condition, as the sail position increases steadily, and the

angular velocities remain non-zero over time.

Figure 4.16 shows the response when the initial velocity is reduced to ϕ̇s = 0.002
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Figure 4.16: Low performance solar sail responses to ϕ̇s = 0.002 radian per second
initial condition.

radian per second. This time, the system is able to compensate for the initial condition

in a reasonable amount of time and control torque.

The responses to an initial control boom position are very similar. These are

shown in figures 4.17 and 4.18.

If there is an initial angular velocity on both the sail and control boom, in the

same direction, the effect is added. Figure 4.19 shows the effect of an initial condition

of ϕ̇s = ϕ̇c = 0.0025 radian per second. The response is almost identical to that

with an initial condition of 0.005 radian per second on either the sail or control boom

angular velocity.
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Figure 4.17: Low performance solar sail responses to ϕ̇c = 0.002 radian per second
initial condition.
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Figure 4.18: Low performance solar sail responses to ϕ̇c = 0.005 radian per second
initial condition.
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Figure 4.19: Low performance solar sail responses to ϕ̇s = ϕ̇c = 0.0025 radian per
second initial condition.
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Figure 4.20: Low performance solar sail responses to ϕ̇s = 0.015 and ϕ̇c = −0.015
radian per second initial condition.

Initial sail and control boom velocities in opposite directions have the effect of

cancelling each other out, like the initial position responses. Figure 4.20 shows the

response to initial angular velocities of ϕ̇s = 0.015 and ϕ̇c = −0.015 radian per second.

Even at this high of angular velocities, the system is able to compensate.

Higher performance solar sails allow for larger initial angular velocities before

losing control. This can be explained by the quicker response time, which can damp

out larger initial angular velocities. An example of this is shown in figure 4.21 for the

medium performance sail and an initial condition of ϕ̇s = 0.005 radian per second.

This controller clearly cannot compensate for large angular velocities. This can
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Figure 4.21: Medium performance solar sail responses to ϕ̇s = 0.005 radian per second
initial condition.
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be attributed to the slow response of the system to changing the equilibrium condi-

tion. Further work may be needed to increase the tolerance, however, as the angular

velocities seen in the step responses (section 4.3.1) were an order of magnitude for

some cases.
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Chapter 5

ORBITAL SIMULATION

5.1 Introduction

Ultimately, the purpose of a solar sail attitude control system is to guide a solar sail

along a trajectory in space for particular missions. Solar sail orbital dynamics are

derived in appendix B. The control input required to guide a solar sail through space

is the angle of the sail with respect to the incident sunlight. This angle determines

the force vector acting on the sail, and thus the trajectory.

In this section, solar sail trajectories are presented, along with the time history of

the sail angle required to give the trajectory. This control time history is fed into the

solar sail attitude control system as the reference position, and the performance is

evaluated. The time scale over which the trajectories occur is much longer than the

time scale over which attitude control maneuvers are performed, so only select areas

of the trajectory will be simulated with the attitude controller.

The trajectories presented are optimal time of flight trajectories that were found

using the two-dimensional solar sail orbital dynamics from appendix B, trajectory

optimization cost function developed in appendix C, and the dynamic gradient op-

timization techniques presented in [Ly99a] and [Bry99]. All orbits are assumed to

be circular and two-dimensional. Thus, eccentricity and inclination of orbits are not

considered.

Units of time (TU) and distance (DU) which are based on the orbit of the Earth

are used to simplify calculations and results. DU is the mean radius of Earth’s orbit,

which is 1.4960e8 kilometers. TU is the time it takes the Earth to travel one radian
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around it’s orbit, assuming a circular orbit, which is 5.0227e6 seconds, or 58.133

days. This allows the Earth’s velocity to be 1 DU
TU

, and the sun to have a gravitational

parameter of 1 DU3

TU2 .

These units also allow for much simplified initial condition vectors. The polar

coordinates and velocities used in the solar sail orbital dynamics in appendix B apply

equally to the planets. The initial conditions or final constraints for leaving or arriving

at Earth are simply r = 1 DU, vr = 1 DU
TU

, and vθ = 0 DU
TU

. The angular position θ can

be set to zero for initial conditions.

5.2 Earth–Mars Trajectories

Earth–Mars trajectories are of significant interest for near-term solar system explo-

ration, and possibly human colonization. Trajectories for the low, medium, and high

performance sails presented in chapter 4 are presented. Mars is assumed to have a

circular orbit of radius r = 1.5 DU.

The low performance Earth to Mars trajectory is given in figure 5.1. All of the

plots displaying the trajectory graphically display the sail angle at periodic points.

The time history of the sail angle to give this orbit is given in figure 5.2. The control

stays within a narrow range of sail angles ( 0.6 to 0.66 radian) which the control

system proved very capable of providing in chapter 4. The Mars to Earth trajectory

using a low performance sail has a very similar, but negative, control time history.

The medium and high performance Earth-Mars trajectories are quite different,

because of the increased thrust available. These trajectories take less than a complete

circuit of the sun to complete, so do not have the gently oscillating control profile. The

medium performance Earth to Mars trajectory and control time history are shown

in figures 5.3 and 5.4. This trajectory has a critical maneuver where the sail angle

goes from 0 to 1.3438 radians in 1.5276e6 seconds. This time rate of change of the

sail position is well within the capabilities of the controller. The high performance
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Figure 5.1: Low performance Earth to Mars trajectory
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sail has a very similar flight and control time histories, but a shorter overall time of

flight. Like the low performance trajectory, the return flight to Earth has a similar,

but mirror-image and negative control profile.

As a test, the area shortly before and after the peak attitude control angle is

examined. The LQR controller gain matrix is calculated given the radius at that

point, 1.8124e8 km. The equilibrium position is still assumed to be a sail and control

boom position of ϕs,eq = ϕc,eq = 0 radians. The result is shown in figure 5.5. The small

magnitude oscillation at the beginning shows where the controller corrects for the

initial condition which is slightly different from the reference input. This oscillation

would be eliminated for a controller calculated at an equilibrium point closer to this

operating point. For the rest of the trajectory segment, the sail holds very closely to

the reference input sail position, and the control input and angular velocities are very

small.

This represents a “worst-case” scenario, as the control input is somewhat close to

π
2
, but the controller is still able to function quite well, given the long time periods

available for maneuvers.

5.3 Earth–Venus Trajectories

Low and medium performance Venus-Earth trajectories do not pose any additional

challenge to the control system than the Earth-Mars trajectories. The high perfor-

mance trajectories, however, pose an interesting problem. The high performance

Earth to Venus trajectory and control history are shown in figures 5.6 and 5.7. The

control goes to -1.5702 radians, which is very close to −π
2

or -1.5708 radians. However,

because the change in control input is very slow, it may still be possible to control

the sail close to this point.

A simulation is performed around the minimum control value. This result is shown

in figure 5.8. Like the Earth-Mars simulation, the LQR gain matrix was calculated
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Figure 5.3: Medium performance Earth to Mars trajectory
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Figure 5.6: High performance Earth to Venus trajectory
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Figure 5.8: High performance Earth to Venus attitude control simulation

at the radius from the sun where the simulation was performed and an equilibrium

position of ϕs,eq = ϕc,eq = 0. It appears that so long as disturbances and initial

conditions are kept to a minimum, the attitude controller can operate very close to

π
2
. However, it may be desirable to place inequality constraints on the trajectory

optimization, so that sail angles close to π
2

are avoided.

5.4 Earth–Jupiter Trajectories

Because Jupiter is very far from the Earth–5 DU–only medium and high performance

trajectories were found. Earth to Jupiter trajectories pose no great difficulties for the
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attitude control system. This is reflected in the trajectory and control histories for the

medium performance trajectory given in figures 5.9 and 5.10. The high performance

trajectory follows the same pattern.

Serious problems arise, however, for Jupiter to Earth trajectories. The medium

and high performance Jupiter to Earth trajectories and control histories are shown in

figures 5.11, 5.12, 5.14, and 5.14. There are significant areas of both trajectories where

the required sail angle is exactly π
2
. The portion of the high performance trajectory

where the control input is larger than π
2

is an oddity of the numerical algorithm. These

values actually correspond to negative sail angles. The attitude controller simply will

not be able to track these regions, because the system becomes uncontrollable. A

control method other than LQR is needed to maintain the sail at this position, or the

optimization scheme will need to use inequality constraints to keep the control away

from π
2
.
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Figure 5.9: Medium performance Earth to Jupiter trajectory
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Figure 5.11: Medium performance Jupiter to Earth trajectory
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Figure 5.12: Medium performance Jupiter to Earth trajectory
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Figure 5.13: High performance Jupiter to Earth trajectory
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Chapter 6

CONCLUSION

6.1 Summary of Results

A number of results were returned from this study. These may be separated into two

parts. First, an approach to solar sail attitude control and dynamics modeling was

presented. Second, there were a number of results regarding the unique behavior and

characteristics of solar sail attitude control.

The design approach gave a sequence of steps to follow which can be followed for

a variety of different problems in future work. This started in chapter 2 where the

rotational dynamics of the sail were developed. Next, chapter 3 covered developing

a state model and LQR attitude controller for the sail. Finally, chapters 4 and 5

present a variety of tests to evaluate solar sail performance.

Chapter 3 presented the result that the linear solar sail model is uncontrollable

when the sail is edge-on to the sun.

Chapters 4 and 5 gave a variety of results from the tests they performed. One

surprising result was the insensitivity of the controller to operating at sail orienta-

tion angles far from the equilibrium position about which the LQR controller was

calculated. The controller was actually able to maintain the sail very close to being

edge-on to the sun. The controller was also insensitive to large initial angular posi-

tions. The controller was sensitive, however, to large changes in the radius from the

sun at which the LQR gain matrix was calculated. The controller’s ability to respond

to step inputs was severely degraded as the radius was changed. Initial angular ve-

locities also posed a problem for the controller. Beyond a very small limit, initial
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angular velocities caused to system to become unstable.

Another result was the observation that the attitude control system was easily

able to track optimal solar sail trajectories. This was because the time scale of the

trajectories was very large compared to the time scale over which the control system

was able to perform attitude maneuvers. However, there were some problems posed

by the sail angle required to achieve certain trajectories, such as in Jupiter to Earth

trajectories, which had periods where the sail needed to be edge-on to the sun.

In summary, the LQR method of control was able to provide effective attitude

control for this solar sail model. A procedure for analysis and design was presented,

and some characteristics important to the design of a solar sail attitude control system

were identified.

6.2 Further Study

This work was fairly limited in scope as this was a preliminary investigation. There-

fore, there are a number of areas where further work is recommended.

First, the analysis and simulation were primarily performed in two dimensions.

An identical study in three dimensions is very important.

The solar sail modeled was ideal, so more realistic modeling is required to identify

the effect of non-ideal sail characteristics on the dynamics. A real sail has a variety of

optical characteristics that will make the dynamics differ from a perfectly reflecting

sail. The sail surface will be curved and not perfectly flat. There will be some

uncertainties in the sail parameters due to manufacturing and imperfect sail shape

after deployment. The flexible dynamics of the sail should be studied in order not

to excite natural frequencies by the control system. The pressure of sunlight differs

from a true inverse square law because the sun is an extended source of light and not

a point source, as was assumed for this study. The sail will slowly degrade over time,

which will need to be adapted to or accounted for. The state of a real sail sill need



90

to be estimated from a set of sensors.

This study examined only one type of attitude control actuator, when there are

a variety possible. One of these is the use of reflective steering vanes. Another is to

shift the center of mass of a spinning sail relative to the center of pressure.

The orbital and attitude dynamics were derived under the assumption of a sail

in orbit around the sun. A spacecraft in orbit around a planet or minor planet

(asteroid) will be very different, because the source of gravity and sunlight will be

from two completely different location, unlike with a solar orbit.

Finally, the trajectory optimization used assumed a sail capable of meeting any

desired angle with respect to the sun, then sought to see if the attitude controller

could meet it. Working the other way around, the trajectory optimization can be

carried out with inequality constraints that limit the sail angle to those that the

control system can provide.
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Appendix A

INERTIA TENSOR DERIVATION

A.1 Physical Model

Inertia tensors are calculated for the two linked bodies which compose the solar sail

spacecraft described in chapter 2, the control boom and the sail. The inertia tensors

are calculated by performing triple-integrals over the volume of each part.

As was discussed in chapter 2, there is an s frame for the sail and a c frame for

the control boom. The integrals are carried within these frames using the variables

x, y, and z for the s1 and c1, s2 and c2, and s3 and c3 directions.

The structural boom is composed of a slender boom and the payload mass at one

end. The sail is composed of the square sail film and the four structural booms which

support it. Each of these structures is assumed to be a rectangular solid of uniform

density. Once the inertia tensors are derived for these shapes, they will be simplified

by substituting out small terms like boom width, sail thickness, and payload mass

width. This will be done by replacing the product of multiples of these dimensions

and the volumetric density with linear boom densities, areal sail density, and payload

mass. Areal density is defined as the mass of the sail film divided by the area. Linear

density is defined as the mass of the boom divided by its length.

The control boom has a length of lb, width and height of gc, and volumetric density

of ρc. The payload mass is a cube with a width of gp and density ρp. These dimensions

and the c frame are shown in figure A.1, along with the reference frame.

The sail has a thickness of h and a volumetric density of ρs. The four structural

booms each have a length of w, width and height of gb, and a volumetric density of
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ρb. These dimensions and the s frame are shown in figure A.2.

A.2 Integrals

The inertia tensors are found by integrating in three dimensions over the entire volume

of each of the four parts of the spacecraft - sail film, structural booms, control boom,

and payload mass. These integrals are performed over limits defined by the dimensions

of each part.

A.2.1 Sail

Sail Film

The sail film integral is formed by two individual integrals over y and z, because two

continuous integrals can be carried out over two triangular halves of the sail. This

integral is shown in equation A.1.
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Is,f = ρs

∫ h
2

−h
2

(
∫ 0

−w

∫ w+z

−z−w
R dy dz +

∫ 0

w

∫ w−z

z−w
R dy dz

)

dx (A.1)

where

R = [ x y z ]
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Structural Booms

The integral for the structural booms is formed in three parts. The first integrates

along the length of one boom beginning at the −s3 end of the structure. The second

integrates over the width of two booms. The third integrates along the length of the

last boom in +s3 direction. This integral is given in equation A.2. R is defined the

same as before.

Is,b = ρb

∫

−gb
2

gb
2

(

∫

−gb
2

−w

∫ gb/2

−gb
2

R dz dy+

∫

gb
2

−gb
2

∫ w

−w
R dz dy +

∫ w

gb
2

∫

R dz dy

)

(A.2)

A.2.2 Control Boom

Boom

The integral for the boom part of the control boom is simply over the rectangular

solid volume of the boom. This is shown in equation A.3. R is defined as before.

Ic,b =
∫ lb

0

∫
gc
2

−gc
2

∫
gc
2

−gc
2

R dz dy dx (A.3)

Payload Mass

The integral for the payload mass is simply over the cube shape, which is located at

a distance lb from the origin. This is shown in equation A.4. R is the same as before.
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A.3 Inertia Tensors

The integrals are now evaluated to produce the inertia tensor matrices. Then, they

are simplified using assumptions of small boom width, sail thickness, and payload

dimensions.

A.3.1 Sail

Sail Film

The inertia tensor of the sail film is given in equation A.5.

Is,f =


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


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2
3
h w4 ρs 0
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

(A.5)

This can be simplified by assuming that h is very small and that h ρs = σs, σs is

the areal density of the sail. Thus, h2 and higher order terms can be neglected, and

h ρs can be replaced by σs. This result is shown in equation A.6.
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(A.6)

Structural Booms

The structural boom inertia tensor is given in equation A.7.
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This tensor can be simplified by assuming that the boom width gb is very small

and that g2
b ρb = σb, where σb is the linear density of the control boom. This simplified

inertia tensor is shown in equation A.8.

Is,b =















4 w3 σb

3
0 0

0 2 w3 σb

3
0

0 0 2 w3 σb

3















(A.8)

Total

The total inertia tensor for the sail is the sum of the sail film and structural boom

tensors, given in equation A.9.

Is =















2
3
w4σs + 4

3
w3σb 0 0

0 1
3
w4σs + 2

3
w3σb 0

0 0 1
3
w4σs + 2

3
w3σb















(A.9)

A.3.2 Control Boom

Boom

The inertia tensor for the boom portion of the control boom is given in equation A.10.

Ic,b =















g4
c lb ρc

6
0 0

0
(

g4
c lb
12

+
g2

c l3
b

3

)

ρc 0

0 0
(

g4
c lb
12

+
g2

c l3
b

3

)

ρc















(A.10)
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This tensor is simplified by assuming that the boom width gc is small and that

g2
c ρc = σc where σc is the linear density of the boom. The result is given in equa-

tion A.11.

Ic,b =















0 0

0 l3c σc

3
0

0 0 l3c σc

3















(A.11)

Payload Mass

The payload mass inertia tensor is given in equation A.12.

Ic,p =















g5
p ρp

6
0 0

0
(

g5
p

6
+ g3

p l
2
b

)

ρp 0

0 0
(

g5
p

6
+ g3

p l
2
b

)

ρp















(A.12)

This is simplified by assuming that the width of the payload mass cube gp is small

and g3
p ρp = mp, the payload mass. This result is given in equation A.13.

Ic,p =















0 0

0 l2b mp 0

0 0 l2b mp















(A.13)

Total

The total control boom inertia tensor is the sum of the boom and payload mass

tensors, which is given in equation A.14.

Ic =















0 0

0 l2b mp +
l3
b

σc

3
0

0 0 l2b mp +
l3
b

σc

3















(A.14)
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Appendix B

ORBITAL DYNAMICS

B.1 Introduction

The orbital dynamics of a solar sail in orbit around the sun (heliocentric) are now

developed. Newtonian dynamics are used to derive polar equations of motion of a

solar sail, given initial conditions and the angular position of the sail with respect to

the incident as a control input. This is the same angle, ϕs(t), that a controller was

developed for in chapter 3.

B.2 Coordinate System

An inertial reference frame, called E, is centered at the center of the solar system.

The sun is assumed to be co-incident with this location, so that the source of gravity

and sunlight acting on the sail is centered at this point. A polar rotating reference

frame, called e, is used to describe the position of the sail in the solar system.

The inertial reference frame is composed of the unit vectors shown in equation B.1.

E = (E1, E2, E3) (B.1)

The polar reference frame is shown in equation B.2. It is composed of three unit

vectors, plus an angular velocity representing its rotation.

e = (e1, e2, e2, ~ωe(t)) (B.2)

These reference frames are shown in figure B.1. The polar reference frame is
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E
1

E
2

E
3

e3

e1e2

θ

r

Figure B.1: 2D orbital dynamics reference frames

related to the inertial frame by the polar coordinates r(t) and θ(t). Also, this gives

the angular velocity of the polar frame, ~ωe(t), which is shown in equation B.3.

~ωe(t) = θ̇(t) E3 = θ̇(t) e3 (B.3)

The transformation matrix between E and e, Ce, is found from θ(t). A vector

expressed in the E frame, ~rE, is converted into a vector in the e frame, ~re, by the

operation ~re = Ce ~rE. Ce is given in equation B.4.

Ce =















cos θ sin θ 0

− sin θ cosθ 0

0 0 1















(B.4)
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Figure B.2: 2D heliocentric position vector of solar sail

B.3 Position Vector

The position vector of the solar sail spacecraft, ~r(t), is shown in figure B.2. Equa-

tion B.5 shows ~r(t) in polar coordinates.

~r(t) = r(t) e1 (B.5)

B.4 Velocity Vector

The velocity vector, ~v(t), is found by taking the time derivative of the position, which

is shown in equation B.6 Note that because the e frame is rotating, the derivative of

any unit vector in e is the cross product of ~ω(t) and that unit vector.
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~v(t) =
d

dt
~r(t)

= ṙ e1 + r ~ωe(t) × e1

= ṙ e1 + r θ̇ e3 × e1

= ṙ e1 + r θ̇ e2 (B.6)

B.5 Acceleration Vector

The acceleration vector, ~a(t), is the time derivative of ~v(t). This is shown in equa-

tion B.7. Note that r, θ, and their derivatives are all functions of time. The (t)

notation has been left off to make the equations less cumbersome.

~a(t) =
d

dt
~v(t)

= r̈ e1 + ṙ ~ω(t) × e1 + ṙ θ̇ e2 + r θ̈ e2 + r θ̇ ~ω(t) × e2

= r̈ e1 + ṙ θ̇ e2 + ṙ θ̇ e2 + r θ̈ e2 − r θ̇2 e1

=
(

r̈ − r θ̇2
)

e1 +
(

2 ṙ θ̇ + r θ̈
)

e2 (B.7)

The 2nd order derivatives of r and θ can be eliminated by introducing two new

variables representing the radial velocity, vr, and the tangential velocity, vθ. These

velocities are given by equations B.8 and B.9. The derivatives of these velocities are

given by equations B.10 and B.11.

vr = ṙ (B.8)

vθ = r θ̇ (B.9)

v̇r = r̈ (B.10)

v̇θ = ṙ θ̇ + r θ̈ (B.11)
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These substitutions provide a state vector for representing the solar sail as given

in equation B.12.

~x(t) =





















r

θ

vr

vθ





















(B.12)

These velocities and their derivatives can be substituted into the acceleration so

that only first order derivatives are present. This result is given in equation B.13.

~a(t) =

(

v̇r −
v2

θ

r

)

e1 +
(

vr vθ

r
+ v̇θ

)

e2 (B.13)

B.6 Free Body Diagram

The free body diagram of the solar sail is shown in figure B.3. Gravity, ~Fg, and solar

radiation pressure, ~Fr, are the two forces acting on the sail. ~Fr depends on the sail

orientation angle, ϕs, which functions as a control input to this problem. These are

the same forces that were calculated in section 2.4.5. They are given in equations

B.14 and B.15.

~Fg(t) = −
µs ms

r2
e1 (B.14)

~Fr(t) =
β µs ms

r2
cos3 ϕs e1 +

β µs ms

r2
cos2 ϕs sinϕs e2 (B.15)

B.7 Newton’s Third Law

Next, Newton’s third law is used to combine the acceleration and force vectors. The

law is given in equation B.16. The combination of forces and accelerations for this

problem are given in equation B.17.
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Figure B.3: 2D orbital dynamics free body diagram.

∑

~F = m~a (B.16)

β µs ms

r2
cos3 ϕs e1 + . . .

. . .+
β µs ms

r2
cos2 ϕs sinϕs e2 + . . .

. . .−
µs ms

r2
e1 =

(

v̇r −
v2

θ

r

)

e1 + . . .

. . .+
(

vr vθ

r
+ v̇θ

)

e2 (B.17)

B.8 Equations of Motion

Finally, a set of differential equations are found for each of the state variables–r, θ, vr,

and vθ. The differential equations for r and θ are found from equations B.8 and B.9.
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The differential equations for vr and vθ are found by splitting the vector equation B.17

into two scalar equations, then solving for v̇r and v̇θ.

The equations of motion are then given by equations B.18, B.19, B.20, and B.21.

ṙ = vr (B.18)

θ̇ =
vθ

r
(B.19)

v̇r =
v2

θ

r
+
µs

r2

(

β cos3 ϕs − 1
)

(B.20)

v̇θ =
µs

r2
β cos2 ϕs sinϕs −

vr vθ

r
(B.21)
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Appendix C

OPTIMAL TRAJECTORIES

C.1 Introduction

This appendix briefly describes the procedure used to calculate the optimal trajec-

tories. The technique for discrete dynamic optimization with terminal equality con-

straints and open final time described in [Ly99a] was used to carry out the opti-

mization. This technique, as it was used for the solar sail trajectory optimization, is

described in this chapter.

These trajectories are found using the dynamics derived in appendix B. The opti-

mization is carried out to find the time history of the control input to the dynamics–

the sail angle with respect to the incident sunlight–which gives the minimum time to

transfer from one set of state values–the initial orbit–to a final set of state values–the

destination orbit. As is discussed in chapter 5, the initial and final state vectors cor-

respond to circular orbits located the mean orbital radii of Earth, Mars, Venus, and

Jupiter.

The states of the dynamics, ~x, are given in equation B.12. This is ~x = [ r θ vr vθ ]T .

The continuous dynamic equations, given in equations B.18 to B.21, can be put

into the form of a discrete vector, ~f(~x(k), u(k), k).

C.2 Basic Cost Function

The problem is to find a time history of the sail angle, u(k), at each time step

k = 0, 1, 2, . . . , N −1 to minimize the scalar cost function given in equation C.1. This

is simply the time of flight between the initial and destination orbits.
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J(u, tf ) = tf (C.1)

C.3 Augmented Cost Function

The terminal equality constraints, ~ψ(~x(N), tf ) = 0, are defined as the radius, ra-

dial velocity, and tangential velocity of the desired final orbit. These are shown in

equation C.2.

~ψ(~x(N), tF ) =















r(N) − rf

vr(N)

vθ(N) − vθ,f















(C.2)

The discrete dynamic equations are formed as difference equations of the contin-

uous dynamic equations found in equations B.18 to B.21. The continuous dynamic

differential equations can be put into a vector form ~fc(~x(t), u(k), t) = [ ṙ θ̇ v̇r v̇θ ].

The value of the time t at each time step k can be represented by T (k). The dis-

crete dynamic difference equation vector can then be formulated as ~fd(~x(k), u(k), k) =

~x(k+1) = ~x(k)+∆T ~fc(~x(T (k)). ∆T is the time step size of the problem, for which an

optimal value is found in addition to the control input, u(k). The difference equations

are given in equation C.3.

~fd(~x(k), u(k), k) =























r(k) + ∆T vr(k)

θ(k) + ∆T vθ(k)
r(k)

vr(k) + ∆T
[

v2

θ
(k)

r(k)
+ µs

r2(k)
(β cos3 u(k) − 1)

]

vθ(k) + ∆T
[

µs

r2(k)
β cos2 u(k) sin u(k) − vr(k) vθ(k)

r(k)

]























(C.3)

The cost function J is augmented with the terminal constraints and discrete dy-

namic difference equations using Lagrange multipliers. A scalar Lagrange multiplier

vector ν is used for the terminal constraints, and a time varying vector ~λ(k) is used
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for the difference equations. The final augmented cost function can then be expressed

by equation C.4.

J̄(u, tf, ~x0) = φ(~x(N), tf ) +

~νT ~ψ(~x(N), tf ) +
N−1
∑

k=0

~λT (k + 1)
[

~fd(~x(k), u(k), k) − ~x(k + 1)
]

+

~λT (0) [~x0 − ~x(0)] (C.4)

C.4 Conclusion

This cost function can then be used with any appropriate optimization method–such

as the gradient methods described in [Ly99a] and [Bry99]–to find and control input

time history that will minimize the time of flight of a solar sail between any two

circular, coplanar orbits around the sun.


